Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

نویسندگان

  • Jingtian Fang
  • William G. Vandenberghe
  • Bo Fu
  • Massimo V. Fischetti
چکیده

We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electrontransport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gateall-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of 66 mV/decade and a drain-induced barrier-lowering of 2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939963]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum current modeling in nano-transistors with a quantum dot

Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...

متن کامل

SOI based nanowire single-electron transistors: design, simulation and process development

One of the great problems in current large-scale integrated circuits is increasing power dissipation in a small silicon chip. Single-electron transistors which operate by means of oneby-one electron transfer, is relatively small and consume very low power and suitable for achieving higher levels of integration. In this research, the four masks step are involved namely source and drain mask, Pol...

متن کامل

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

Fabricating and Aligning Silicon Nanowires to Investigate Size Dependence for Quantum Confinement and Electronic Transport Analysis Section

The fabrication and understanding of the fundamental properties of well-defined one-dimensional structures are critical towards the development of nanostructures, nanomaterials, and developing nanotechnology. One-dimensional nanostructures can address basic issues about size and dimensionality in applications such as photonics [1,2], nanoelectronics [3,4], nanostructured materials [5,6], and ma...

متن کامل

A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors

In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016